Showing posts with label Symbol. Show all posts
Showing posts with label Symbol. Show all posts

Sunday, November 12, 2017

Swastika Tiling

An implicit curve: swastika(x,y) = 0


The swastika here is an ancient Buddhist symbol, not the Nazi one.


Composition of swastika(x,y), arctan(x) and tan(x)
(k = 0.25)

Composition of swastika(x,y), arctan(x) and tan(x)
(k = 0.125)

Composition of swastika(x,y), arctan(x) and tan(x)
(k = 0.4)

Composition of swastika(x,y), arcsin(x) and sin(x)
(k = 0.25)

Composition of swastika(x,y), arcsin(x) and sin(x)
(k = 0.4)

Swastika of Swastikas
(k = 1/4, 5/24)

Swastika of Swastikas of Swastikas
(k = 1/4, 1/4, 5/24)

Swastika of Swastikas of Swastikas
(Unicode of 卍: 0x534D)

A Maze of Swastikas
(k = 0.1)


( Mathematical software used: Graph )


Related posts:

Wednesday, December 14, 2016

Triple Crescent Moon

Triple Crescent Moon Symbol
(Boundary curves: circles)


Boundary curves: superellipses with exponent 2.5


Boundary curves: superellipses with exponent 4


A monster face!


Hi!


Exponents: 1.5, 2, 2.5, 3, 3.5, 4


( Mathematical software used: gnuplot )

Monday, November 28, 2016

Cross Patty (cross pattée)


max( f(abs(x), abs(y)), f(abs(y), abs(x)) ) > 0



(1) f(x,y) = ax^2 - y + b  (parabola)


a = 0.035, b = 0.85


(2) f(x,y) = x^2 + (y - a)^2 - b^2  (circle)


a = 15.6, b = 14.75


(3) f(x,y) = abs(x)^p + abs(y - a)^p - b^p  (superellipse)


a = 15.6, b = 14.75
p = 2.5, 2.4, 2.3, ...,1.5

p = 4, a = 10, b = 8


(4) f(x,y) = a[exp(-abs(x+b)^p) + exp(-abs(x-b)^p)] - y + c


p = 1.5, a = 1, b = 7, c = 2

p = 3, a = 1, b = 7, c = 2


(5) f(x,y) = a cos(bx)^p - y + c


p = 1, a = -1, b = π/7, c = 2

p = 2, a = 1, b = π/7, c = 2

p = 3, a = -1, b = π/7, c = 2

p = 4, a = 1, b = π/7, c = 2


( Mathematical software used: Graph )

Sunday, August 7, 2016

How to Draw the Olympic Rings Mathematically?


Inequalities (Relations) for the Olympic Rings:

  1. (Blue Ring)  min(max(R1(x,y), -y), max(R1(x,y), y, -R4(x,y))) < 0
  2. (Black Ring)  min(max(R2(x,y), -y, -R4(x,y)), max(R2(x,y), y, -R5(x,y))) < 0
  3. (Red Ring)  min(max(R3(x,y), -y, -R5(x,y)), max(R3(x,y), y)) < 0
  4. (Yellow Ring)  min(max(R4(x,y), -y, -R1(x,y)), max(R4(x,y), y, -R2(x,y))) < 0
  5. (Green Ring)  min(max(R5(x,y), -y, -R2(x,y)), max(R5(x,y), y, -R3(x,y))) < 0

Functions:
  • R1(x,y) = (sqrt((x+2d)² + (y-h)²) - a)² - b²
  • R2(x,y) = (sqrt(x² + (y-h)²) - a)² - b²
  • R3(x,y) = (sqrt((x-2d)² + (y-h)²) - a)² - b²
  • R4(x,y) = (sqrt((x+d)² + (y+h)²) - a)² - b²
  • R5(x,y) = (sqrt((x-d)² + (y+h)²) - a)² - b²

Constants:
  • a = 49.25
  • b = 4.75
  • d = 58.5
  • h = 25

Download Examples:


( Mathematical softwares used: Graph, gnuplot )

Sunday, May 22, 2016

Swastika (卍)


Equation:

(196x² + y² - 1) × (196y² + x² - 1)
× (49x² + 98x + y² + y + 49) × (49x² + 98x + y² - y + 49)
× (49y² - 98y + x² + x + 49) × (49y² - 98y + x² - x + 49)
= 100000000


Note:

The swastika here is an ancient Buddhist symbol, not the Nazi one.
It means good luck, auspiciousness, well-being, and prosperity.

The pronunciation of the character 卍 (wàn) in Chinese is the same
as that of the character 萬 or 万 (means 10,000 or ten thousand).

Rewrite the above equation as

[4(7x)² + y² - 1] × [4(7y)² + x² - 1]
× [(7x)² + 2(7²x) + y² + y + 7²] × [(7x)² + 2(7²x) + y² - y + 7²]
× [(7x)² - 2(7²y) + x² + x + 7²] × [(7x)² - 2(7²y) + x² - x + 7²]
= 10000²,

we see that it is really an equation for good luck.
(It uses the lucky number 7 to produce good luck!)








( Mathematical software used: gnuplot )


Related posts: