## Wednesday, December 14, 2016

### Five Interlaced Moons

Five Interlaced Crescents

### Generalization:

Let A and B be two disks with radii a and b.
The set difference A\B is used to plot the moons
in the following animations.

Animation parameter: the position of B

Animation parameter: b (the radius of B)

Animation parameter: the position of A

Animation parameter: a (the radius of A)

( Mathematical softwares used: gnuplot, GeoGebra )

### Four Interlaced Crescents

A cross pattée!

( Mathematical softwares used: Graph, gnuplot )

Related posts:

### Triple Crescent Moon

Triple Crescent Moon Symbol
(Boundary curves: circles)

Boundary curves: superellipses with exponent 2.5

Boundary curves: superellipses with exponent 4

A monster face!

Hi!

Exponents: 1.5, 2, 2.5, 3, 3.5, 4

( Mathematical software used: gnuplot )

## Monday, November 28, 2016

### (1) f(x,y) = ax^2 - y + b  (parabola)

a = 0.035, b = 0.85

### (2) f(x,y) = x^2 + (y - a)^2 - b^2  (circle)

a = 15.6, b = 14.75

### (3) f(x,y) = abs(x)^p + abs(y - a)^p - b^p  (superellipse)

a = 15.6, b = 14.75
p = 2.5, 2.4, 2.3, ...,1.5

p = 4, a = 10, b = 8

### (4) f(x,y) = a[exp(-abs(x+b)^p) + exp(-abs(x-b)^p)] - y + c

p = 1.5, a = 1, b = 7, c = 2

p = 3, a = 1, b = 7, c = 2

### (5) f(x,y) = a cos(bx)^p - y + c

p = 1, a = -1, b = π/7, c = 2

p = 2, a = 1, b = π/7, c = 2

p = 3, a = -1, b = π/7, c = 2

p = 4, a = 1, b = π/7, c = 2

( Mathematical software used: Graph )

## Friday, October 21, 2016

### Rounded Cuboid with Superquadric Corners

The corners of the rounded cuboids on my previous post are spherical corners.

We can generalize the spherical corners (power = 2) to superquadric corners (power > 0).

### Equation 1.

The equation for a rounded cuboid with superquadric corners can be given by:

max(|x| - a, 0)p + max(|y| - b, 0)p + max(|z| - c, 0)p = dp,

where a, b, c, d ＞ 0, and p ≧ 1.

p = 1

p = 1.5

p = 2

p = 4

p = 10

### Equation 2.

Furthermore, the above equation can be generalized as follows:

max(|x| - a, 0)p + max(|y| - b, 0)q + max(|z| - c, 0)r = d,

where a, b, c ≧ 0, d ＞ 0, and p, q, r ＞ 0.

## Monday, October 17, 2016

### Equations:

The equation of a rounded rectangle centered at (0,0) with width 2(a+c), height 2(b+c)
and corner radius c can be expressed as

max(|x| - a, 0)² + max(|y| - b, 0)² = c² ...... (I)

or

(|x| - a + │|x| - a│)² + (|y| - b + │|y| - b│)² = (2c)² ...... (II)

, where a, b, and c are positive numbers.

### Proof:

The rounded rectangle can be broken down into four parts (see the image below):
╭
│ (|x| - a)² + (|y| - b)² = c²,  if |x|≧a and |y|≧b ...... (1)
│ |x| = a + c                  ,  if |x|≧a and |y|＜b ...... (2)
│ |y| = b + c                  ,  if |x|＜a and |y|≧b ...... (3)
│ no graph                    ,  if |x|＜a and |y|＜b ...... (4)
╰

Since |x|≧a in part (2) and |y|≧b in part (3),
the above expression is equivalent to
╭
│ (|x| - a)² + (|y| - b)² = c²,  if |x|≧a and |y|≧b;
│ (|x| - a)² = c²               ,  if |x|≧a and |y|＜b;
│ (|y| - b)² = c²               ,  if |x|＜a and |y|≧b;
│ 0 = c²                        ,  if |x|＜a and |y|＜b.
╰

Now make the equations of the four parts look similar:
╭
│ (|x| - a)² + (|y| - b)² = c²,  if |x|≧a and |y|≧b;
│ (|x| - a)² +   (b - b)² = c²,  if |x|≧a and |y|＜b;
│   (a - a)² + (|y| - b)² = c²,  if |x|＜a and |y|≧b;
│   (a - a)² +   (b - b)² = c²,  if |x|＜a and |y|＜b.
╰

Since max(|x|, a) =
╭
│ |x|,  if |x|≧a
│  a,  if |x|＜a
╰
and max(|y|, b) =
╭
│ |y|,  if |y|≧b
│  b,  if |y|＜b,
╰
the four equations can be combined into a single one as follows:

(max(|x|, a) - a)² + (max(|y|, b) - b)² = c²,

or equivalently,

max(|x| - a, 0)² + max(|y| - b, 0)² = c² ...... (I)

Using the formula max(z, 0) = (z + |z|) / 2,
the above equation can be expanded to

(|x| - a + │|x| - a│)² + (|y| - b + │|y| - b│)² = (2c)² ...... (II)

### Note:

• When a or b is zero (but not both), the equation (I) describes a stadium (curve).
• When c is zero (a and b are positive), the equation (I) describes a rectangular region rather than a rectangle.
• The equation  max(|x| - a, |y| - b) = 0  describes a rectangle.
• The equation  max(|x| - a, 0)² + max(|y| - b, 0)² + max(|z| - c, 0)² = d²  describes a rounded cuboid.

max(|x|, 0)² + max(|y| - 1, 0)² = 2²
(a = 0)

max(|x| - 3, 0)² + max(|y|, 0)² = (1.5)²
(b = 0)

max(|x| - 3, 0)² + max(|y| - 2, 0)² = 0
(c = 0)

max(|x| - 4, 0)² + max(|y| - 3, 0)² + max(|z| - 1, 0)² = 1

## Tuesday, October 11, 2016

### Funny Boxing Champion (2)

( Mathematical software used: gnuplot )

## Wednesday, October 5, 2016

### Funny Boxing Champion (1)

Equations (方程式):

(1) body (身体):
x² + y² - 72[exp(1/(sin(y+x) - 1)) ± exp(1/(sin(y-x) - 1))]² = 5/2

(2) eye sockets (眼眶):
(abs(x) - π/4)² + (y - 3π/2)² = (π/8)²

(3) eyes (眼睛):
arcsin²(k(abs(x) - π/4)) = arcsin²(k(y - 3π/2))

(4) mouth (嘴巴):
arcsin²(kx) = arcsin²(k(y - 19π/16))

(5) navel (肚臍):
arcsin²(kx) = arcsin²(k(y + π/3))

(8 ≦ k ≦ 10)

( Mathematical software used: gnuplot )

## Sunday, August 21, 2016

### Tiling using Rounded Crosses

( Mathematical software used: Graph )

Related posts:

## Wednesday, August 17, 2016

### Rounded Cross - cross with rounded corners (圓角十字形)

gnuplot script:

a = 2
b = 1
c = 1
w = 8
max(x,y) = x < y ? y : x
min(x,y) = x < y ? x : y
fun(x,y) = \
min(min(max(abs(x)-b,0)**2 + max(abs(y)-(a+b+2*c),0)**2 - c**2, \
max(abs(x)-(a+b+2*c),0)**2 + max(abs(y)-b,0)**2 - c**2), \
max((abs(x)-(b+c))**2 + (abs(y)-(b+c))**2 - c**2, \
c**2 - (abs(x)-(b+2*c))**2 - (abs(y)-(b+2*c))**2))
set xrange [-w:w]
set yrange [-w:w]
set size ratio -1
set samples 512
set isosamples 512
set contour base
set cntrparam levels discrete 0.0
unset key
unset surface
set table 'fun.dat'
splot fun(x,y)
unset table
plot 'fun.dat' w l lw 1.5 lc rgb "red"

(a = 2, b = 1, c = 1)

(a = 4, b = 0.5, c = 0.5)

(a = 0, b = 0, c = 2)

(a = 0, b = 2, c = 4/3)

(a = 2, b = 0, c = 4/3)

( Mathematical softwares used: Graph, gnuplot )

Related posts: